
End-to-End Processing for Streaming Applications
(Addenda)

Ying-zong Huang (2010)

Part I

Delay sensitive on-demand streaming
In [1], the problem of on-demand streaming was modeled as follows:

A pre-encoded and subset-decodable packet store with a playback rate of K packets per unit
time is to be streamed across a packet erasure channel with a nominal (i.e. error-prone) throughput
of N packets per unit time. With known probability p, some packets are erased i.i.d. The sender
has access to encoder-computed importance indicators of the packets, where packet i contributes an
additional additive distortion Di if not decoded. The sender can choose to discard packets, send
them as is, or code them into checksums and send the checksums. The paper derived the sender’s
optimal choices given this model. This work did not consider delay, and so realistically N and K
cannot be very large.

If instead there is a fixed delay of T packets allowed before decoding, then we can extend the
solution to account for this. We do this by choosing checksums that do not span more than T
consecutive packets, but choosing the disposition of packets over all of them.

1 Greedy algorithm for assigning checksums
Let the maximum allowed delay be T packets. We describe a several-pass (suboptimal) algorithm
to lower the expected distortion incurred at the decoder.

For notation, we index the packets as 1, 2, ..., T ;T + 1, T + 2, ..., 2T ; ...
We let Di be the distortion of packet i; let DS be the total distortion of packets in S; let D̄S be

the average of the same; let D̄j
i be the average distortion of packets i, ..., j.

Let X be the number of errors. Define pi = P[X > i] as the residual error rate when i or fewer
errors can be transparently handled, e.g. with a properly designed Reed-Solomon code. For instance,
if X ∼ B(x;n, p), where B(x;n, p) =

(
n
x

)
px(1− p)n−x, then let the residual error rate be:

pi(n) =

n∑
x=i+1

(
n

x

)
px(1− p)n−x

where p is the raw error rate.
For each packet j in a block of T packets i + 1, ..., i + T , of which a subset S is kept, we may

consider the following possibilities, along with their expected cost with respect to packet j.

1

• Discard packet j, i.e. a (0,1) code: p−1(0)Dj = Dj

• No protection, i.e. a (1,1) code: p0(1)Dj

• Protect S with 1 check, i.e. an (|S|+ 1, |S|) code: p1(|S|+ 1)Dj

• ...

• Protect S witih k checks, i.e. an (|S|+ k, |S|) code: pk(|S|+ k)Dj

There are more possibilities, but we will stick to these limited options. Next we describe the
algorithm. Suppose we begin with K data packets (divisible by T) and N (assume ≥ K) total
packet slots.

Step 0 (initialization): Initialize S1, ..., Sk by setting Sj = {(j − 1)T + 1, ..., jT}, so D̄Sj
=

D̄jT
(j−1)T+1. Define Cj(s) to be the expected cost of block Sj when protected with sj checks. Initialize

the protection amount to sj = 0 (no protection) for all k bins and initialize the costs for bin j to
CSj (0) = p0(1)DSj .

Step 1 (allocate checks): Determine the marginal cost reductions ∆CSj
= CSj

(sj)−CSj
(sj+1)

across the k bins by computing
(p0(1)− p1(|Sj |+ 1))DSj

Choose
j∗ = argmax

j
∆CSj

and update the amount of protection on bin j∗ by sj∗ ← sj∗ + 1. Update also N ← N − 1. Stop
when N = K. Go to Step 2.

Step 2 (bin optimize): Within each bin, use a variation of the original method to determine
if some protected packets should be left unprotected by finding the marginal cost reduction

∆CSj
= CSj

(sj)− CSj\i(sj)− Ci(0)

by choosing the lowest cost packet i from Sj . If ∆CSj
> 0, then Sj ← Sj\i. If ∆CSj

≤ 0, then go
to Step 3.

Step 3 (choose discards): For each packet i, compute the cost Ci(sj) − Ci(−1) + CSj
(sj) −

CSj\i(sj) of discarding packet i. Choose the lowest discard cost packet i. Suppse it belongs in Sj ,
evaluate the marginal cost reduction test

∆Ci = Ci(sj)− Ci(−1) + CSj
(sj)− CSj\i(sj) + CSj∗(sj∗)− CSj∗(sj∗ + 1)

where j∗ is chosen by the same method as in Step 1, and it may even be the same bin, in which case
Sj∗ = Sj\i. If ∆Ci > 0, then N ← N + 1, Sj ← Sj\i, and then run Step 1. If ∆Ci ≤ 0, then stop.

When the iterative algorithm terminates, we have a set of D discarded packets, and a set of
protected packets in each bin numbering no more than T , with total number of check packets equal
to N−K+D. While this algorithm is almost certainly suboptimal, it is a reasonable first approach for
fixed coding delay transcoding. An improvement would be to remove the sharp coding boundaries.

2

Part II

Stream decodability computation
In [2], the sender in the proposed system for lossless streaming can base its decisions on a calculation
of whether certain source packets are likely to be decodable. After the sender consumes source
packets s[1], ..., s[j] and transmits network packets x[1], ...,x[k], and receives feedback in the form of
P (set of known received network packets), N (set of known lost network packets), and U (packets of
unknown status), it can figure the probability of every source packet being sequentially decodeable.
The structure of sequential decodability allows the algorithm for computing these probabilities in
complexity O(j2) rather than O(2|U|). The following describes how this is done.

1 Data Structure
Decodeability when x[1], ...,x[k] are sent is governed by two numbers, which are states in the success
probability calculation algorithm: r(k), the number of received network packets out of the k that the
sender supposes the receiver has; and nG(k), the number of source packets that have been consumed
in the production of these r(k) network packets (and hence the maximum potentially decodeable
ones).

The algorithm begins by building the states r(k) into a trellis indexed by k and assigning tran-
sition probabilities. Each state “time” k is associated with the network packet x[k]. Since whenever
r(k) ≥ nG(k), decoding up to s[nG(k)] succeeds.1 The state value nG(k) therefore corresponds to
a special “success” state at index k, meaning x[1], ...,x[k] together can decode s[1], ..., s[nG(k)]. The
initial states are r(0) = 0, nG(0) = 0.

For each network packet x[k] ∈ U , two values of r(k) branch from each value of r(k−1) depending
on whether x[k] is supposed as received or not: r(k) = r(k − 1) with probability p (not received),
and r(k) = r(k − 1) + 1 with probability 1 − p (received). For each x[k] ∈ P, r(k) = r(k − 1) + 1
with probability 1, and for each x[k] ∈ N , r(k) = r(k − 1) with probability 1.

A path through the trellis (i.e. a sequence of values r(0), r(1), ..., r(k)) represents a non-decodeable
path for the source packet s[j], if r(i) < nG(i) for all i ∈ {1, ..., k} where nG(i) ≥ j. The probability
that s[j] is sequentially decodeable is then the complement of the sum probability of all such non-
decodeable paths.

2 Computation
Let pi(r(i − 1), r(i)) denote the transition probability from state value r(i − 1) to state value r(i).
The probability of a path r(0), r(1), ..., r(k) is the product of the transition probabilities along it,
namely

k∏
i=1

pi(r(i− 1), r(i))

1Except when the receiver matrix Ĝ is redundant, but this can be pre-detected and avoided by an intelligent
sender.

3

This can be factored into two pieces:

k′∏
i=1

pi(r(i− 1), r(i))×
k∏

i=k′+1

pi(r(i− 1), r(i))

which are respectively the probability of the left partial path into r(k′), which we call αk′(r(1), ..., r(k′)),
and the probability of the right partial path out of r(k′), which we call βk′(r(k′+1), ..., r(k)). These
can be computed recursively as

αk′(r(1), ..., r(k′)) = pk′(r(k′ − 1), r(k′))αk′−1(r(1), ..., r(k
′ − 1))

and
βk′(r(k′ + 1), ..., r(k)) = pk′+1(r(k

′), r(k′ + 1))βk′+1(r(k
′ + 2), ..., r(k))

The initial conditions are α0(0) = 1 and βk(r(k)) = 1.
In the following, suppose j = nG(k′) > nG(k′ − 1). Let Sk′(r(k′)) be the set of non-decodeable

paths for s[j] through r(k′). Let Ak′(r(k′)) be the set of all partial paths that enter r(k′). Let
Bk′(r(k′)) be the set of all partial paths that leave r(k′) and do not pass through a “success” state
value. Then, Sk′(r(k′)) = Ak′(r(k′))⊗Bk′(r(k′)). The sets are recursive, in that

Ak′(r(k′)) = {Ak′−1(0), ..., Ak′−1(nG(k′ − 1))} ⊗ r(k′)

and
Bk′(r(k′)) = r(k′)⊗ {Bk′+1(0), ..., Bk′+1(nG(k′ + 1)− 1)}

Now, we can further factor the sum probability of the non-decodeable paths for s[j] through r(k′)
by noting ∑

r(1),...,r(k)∈Sk′ (r(k′))

αk′(r(1), ..., r(k′))× βk′(r(k′ + 1), ..., r(k))

=
∑

r(1),...,r(k′)∈Ak′ (r(k′))

αk′(r(1), ..., r(k′))×
∑

r(k′),...,r(k)∈Bk′ (r(k′))

βk′(r(k′ + 1), ..., r(k))

and the recursion

αk′(r(k′)) ≜
∑

r(1),...,r(k′)∈Ak′ (r(k′))

αk′(r(1), ..., r(k′))

=

nG(k′−1)∑
r(k′−1)=0

pk′(r(k′ − 1), r(k′))
∑

r(1),...,r(k′−1)∈Ak′−1(r(k
′−1))

αk′−1(r(1), ..., r(k
′ − 1))

=

nG(k′−1)∑
r(k′−1)=0

pk′(r(k′ − 1), r(k′))αk′−1(r(k
′ − 1))

and likewise

βk′(r(k′)) ≜
∑

r(k′),...,r(k)∈Bk′ (r(k′))

βk′(r(k′ + 1), ..., r(k))

4

=

nG(k′+1)−1∑
r(k′+1)=0

pk′+1(r(k
′), r(k′ + 1))

∑
r(k′+1),...,r(k)∈Bk′+1(r(k

′+1))

βk′+1(r(k
′ + 2), ..., r(k))

=

nG(k′+1)−1∑
r(k′+1)=0

pk′+1(r(k
′), r(k′ + 1))βk′+1(r(k

′ + 1))

So the final marginal probability of the sequential decodeability of s[j] is simply

q(j) ≜ 1−
nG(k′)−1∑
r(k′)=0

αk′(r(k′))βk′(r(k′))

This immediately gives a recursive algorithm for computing the decodeability probabilities q(1), ..., q(j)
of all source packets s[1], ..., s[j] at once. Beginning at the index k′ = 0, and increasing, recur-
sively compute all values of the left probabiliites αk′(r(k′)) of the non-success state values at index
k′. Beginning at the index k′ = k, and decreasing, recursively compute all values of the right
probabilities βk′(r(k′)) of the non-success state values at index k′. Then, at each index k′ where
j = nG(k′) > nG(k′ − 1), sum over the products of left and right probabilities at the non-success
state values, and take the complement.

References
[1] Huang, Apostolopoulos, “A Joint Packet Selection/Omission and FEC System for Streaming

Video.”

[2] Huang, Mehrotra, Li, “A Hybrid FEC-ARQ Protocol for Low-Delay Lossless Sequential Data
Streaming.”

5

