
Exact Incremental and Distributed Regression

Ying-zong Huang

May 6, 2016

1 Canonical regression
Given sequences {xi}i ∈ Rk, {yi}i ∈ Rn, {ni}i ∈ Rn, a matrix A ∈ Rn×k, and
a noisy linear system |yi

|

 =

 � �
A

� �

 |
xi
|

+

 |
ni
|

 (1)

the canonical regression problem is the inversion

A∗ = arg min
A

∑
i

‖Axi − yi‖22 (2)

this being the equivalent to the least-squares estimator

A∗ = arg min
A

E‖Ax− y‖22 (3)

for the same linear system y = Ax+n when x, y, n are zero-mean random vari-
ables and n is uncorrelated with x, under the objective of minimizing estimator
noise variance.

The objective of Eq. (2) is quadratic in A, and we formally differentiate and
apply critical point methods, i.e.

∇A

∑
i

‖Axi − yi‖22 =
∑
i

2(Axi − yi)xTi (4)

= 2
∑
i

Axix
T
i − yixT (5)

where

∇Af =


∂f

∂A11
· · · ∂f

∂A1k

...
. . .

...
∂f

∂An1
· · · ∂f

∂Ank


T

=


∇aT

(0)
f

...
∇aT

(n−1)
f


T

(6)
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More pedantically, the objective of Eq. (2) is separable in each row of

A =

 aT(0)

...
aT(n−1)

 (7)

because we can separately minimize

a∗(u) = arg min
a(u)

∑
i

‖aT(u)xi − y
(u)
i ‖

2
2 (8)

Without loss of generality, take a , a(u), x , xi, y , y
(u)
i . Expanding each

term,

‖aTx− y‖22 = (xTa− yT )(aTx− y) = xTaaTx+ y2 − 2yaTx (9)

and differentiating,

∇aT ‖aTx− y‖22 = (xTa)T∇aT (aTx) +∇aT (xTa)(aTx)− 2y∇aT (aTx)(10)
= aTxxT + (aTx)T∇T

a (xTa)− 2yxT (11)
= aTxxT + xTaxT − 2yxT (12)
= 2aTxxT − 2yxT (13)

Summing across all samples and applying the critical condition,∑
i

a∗Txix
T
i − yixTi = 0 (14)

a∗T
∑
i

xix
T
i =

∑
i

yix
T
i (15)

Letting M be the number of samples in the sequences {xi}i, {yi}i, put

X =
[
x0 · · · xM−1

]
(16)

and
Y =

[
y0 · · · yM−1

]
(17)

Eq. 15 can be re-written as

a∗TXXT = Y XT (18)

Essentially we need to compute the sample covariance matrix U = XXT

and the sample cross-covariance matrix V = Y XT . With these two matrices,
the solution of

a∗TU = V (19)

is
a∗T = V U−1 (20)
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provided U is invertible, i.e. there are at least as many samples as k, the
dimension of each xi.

It is straightforward to show that the same applies when each yi is the
original in Eq. 2 and aT is A, that is,

A∗ = V U−1 (21)

Verification of the linear prediction given xi:

A∗xi = Y XT (XXT )−1xi (22)
= Y X†xi (23)

The second form is in the form of the Moore-Penrose pseudo-inverse X†.
The residual error over all samples:

e =
∑
i

‖A∗xi − yi‖22 = tr
[
(V U−1X − Y )(V U−1X − Y )T

]
(24)

= tr
[
V U−1XXTU−1V T +W − 2Y XTU−1V T

]
(25)

= tr
[
W − V U−1V T

]
(26)

= tr [W ]− tr
[
V U−1V T

]
(27)

= tr [W ]− tr
[
A∗V T

]
(28)

where W = Y Y T .

2 Incremental regression
The operative quantities are the sample covariance and sample cross-covariance
matrices:

The covariances

U ,
∑
i

xix
T
i = XXT (29)

W ,
∑
i

yiy
T
i = Y Y T (30)

The cross-covariance
V ,

∑
i

yix
T
i = Y XT (31)

These terms can be computed incrementally. The only non-linear operation
is the inversion of U .

The correction to A∗ = V U−1 is

∆A∗ = V∆U−1 + ∆V U−1 + ∆V∆U−1 (32)

∆e = yTi yi − tr
[
A∗∆V T + ∆A∗V T + ∆A∗∆V T

]
(33)
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Here, ∆V = yix
T
i is an incremental cross-covariance, easily computed. ∆U−1 is

more complicated. We appeal to the Sherman-Morrison formula, which states

(U + xix
T
i )−1 = U−1 + ∆U−1 (34)

= U−1 − U−1xix
T
i U
−1

1 + xTi U
−1xi

(35)

or more generally the Woodbury matrix identity, which states

(U +XXT )−1 = U−1 + ∆U−1 (36)
= U−1 − U−1X(I∆M +XTU−1X)−1XTU−1 (37)

if the increment comprises multiple (e.g. ∆M) samples in X and Y .
This method is actually not computationally efficient, but contains the mem-

ory usage to the storage of each increment, if that should be a concern.
A way to balance the complexity of the update is the following rank condition

heuristic: if ∆M ≥ k, then compute (U+∆U)−1 via direct inversion; if ∆M < k,
then compute U−1 + ∆U−1 via low-rank update.

3 Distributed regression
The incremental version of regression does not lend itself naturally to distribu-
tion, since there is serial dependency from one increment to the next.1

Scheme A — One possible map-reducible scheme is to compute only
localVs and Us so the final reduction is

A∗ =

(∑
s′

Vs′

)(∑
t′

Ut′

)−1

(38)

If a central node is responsible for dispatching data as well as reduction, we can
use the rank condition heuristic to decide whether to perform a central low-rank
update, or a map-reduced (i.e. sharded) direct inversion.

Scheme B — If shards are allowed direct communication with each other,
and synchronization issues are resolved, another possible scheme is to have each
shard be responsible for computing all cross terms involving Vs, e.g. compute
Vs, Us locally, pull Ut for all t 6= s from other shards, then compute

A∗s = VsU
−1 = Vs

Us +
∑
t6=s

Ut

−1 (39)

and the final reduction becomes only addition,

A∗ =
∑
s

A∗s (40)

1See also http://www.csee.umbc.edu/~hillol/PUBS/Papers/sdm08_bhaduri.pdf
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Scheme C — We can combine Scheme B with incrementalism to create a
two-phase protocol. In the communication phase, suppose the shards each have
Vs and the sum U = Us +

∑
t 6=s Ut. They exchange local increments ∆Us so

that each shard updates to U := U + ∆Us +
∑

t 6=s ∆Ut. Further each shard up-
dates A∗s = VsU

−1 as before. In the collection phase, each shard receives local
increments Xs, Ys and computes ∆Vs, ∆Us. Finally the reduction computes
A∗ =

∑
sA
∗
s. If we do not demand consistency, these phases can happen asyn-

chronously. In particular, receiving new data at any shard triggers a collection
phase locally, followed by a communication phase at all shards, followed by a
reduction.

4 Ridge regression
The prior methods apply verbatim to Ridge regression. To show this, modify
canonical regression with a regularization term to obtain the Ridge solution

A∗ = arg min
A

∑
i

‖Axi − yi‖22 + λ‖A‖2F (41)

The additional term in the derivative is 2λ
∑
Auv, giving the modified critical

condition (c.f. Eq. 15)

a∗T
∑
i

xix
T
i =

∑
i

yix
T
i − λa∗T (42)

The single dimension case reduces to

a∗T

(
λ+

∑
i

xix
T
i

)
=
∑
i

yix
T
i (43)

The multidimensional case is similar

A∗

(
λIk +

∑
i

xix
T
i

)
=
∑
i

yix
T
i (44)

Thus the solution (Eq. 21) is only slightly perturbed, by replacing U = XXT

with
U = λIk +XXT (45)

which is to say, that the covariance of {xi}i is augmented by a self-variance. In
the limit of large λ, we have

A∗ = V U−1 ≈ V λ−1 → 0 (46)

Consider λIk as the prior covariance assumption, worth exactly λ additional
white samples of x with unit per-dimension variance and uncorrelated with cor-
responding y samples (hence nothing on RHS of Eq. 44). Adding uncorrelated
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samples to the data has the effect of mixing a null model (A = 0) into the
solution in the absence of data — also ensuring U is invertible.

The residual error of Eq. (28) is also slightly changed

e =
∑
i

‖A∗xi − yi‖22 (47)

= tr
[
V U−1XXTU−1V T +W − 2Y XTU−1V T

]
(48)

= tr
[
V U−1(U − λIk)U−1V T +W − 2V U−1V T

]
(49)

= tr [W ]− tr
[
A∗V T

]
− λ‖A∗‖2F (50)

i.e., there is an additional term due to regularization. If we retain tr [W ] −
tr
[
A∗V T

]
= e + λ‖A∗‖2F as the error expression (the Ridge error), then it

includes the model penalization term automatically, useful against overfitting.
Since the only modification from canonical regression is the computation of

U , the incremental and distributed versions are the same except for initializa-
tion.

5 Miscellany

5.1 Cholesky decomposition
The matrix equation A∗ = V U−1 can be solved less expensively without matrix
inversion by using a (pre-computed) Cholesky decomposition of U = LLT , from
which a dedicated Cholesky solver can solve

LLTA∗T = V T (51)

for A∗
T

.
There are also low-rank updates to the Cholesky expression directly.2

5.2 Low-rank downdate
The Sherman-Morrison and Woodbury identities can be modified to allow down-
dates, by switching two signs:

(U − xixTi )−1 = U−1 + ∆U−1 = U−1 +
U−1xix

T
i U
−1

1− xTi U−1xi
(52)

and

(U−XXT )−1 = U−1+∆U−1 = U−1+U−1X(I∆M−XTU−1X)−1XTU−1 (53)
2see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.5275&rep=

rep1&type=pdf
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5.3 Intercept
If {xi}i, {yi}i have non-zero means x̄, ȳ, then the means can be removed first.
Or, we can compute the intercept b∗ from the relation

yi − ȳ = A∗(xi − x̄) + ni (54)

namely
b∗ = ȳ −A∗x̄ (55)

The estimates for A∗ and e will also be computed from the mean-removed
moments instead, i.e.

U = (X − X̄)(X − X̄)T = XXT −Mx̄x̄T (56)

V = (Y − Ȳ )(X − X̄)T = Y XT −Mȳx̄T (57)

W = (Y − Ȳ )(Y − Ȳ )T = Y Y T −MȳȳT (58)

where X̄ ,
[
x̄ · · · x̄

]
and Ȳ ,

[
ȳ · · · ȳ

]
are of dimensions k×M and

n×M , respectively.
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