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Abstract—As Cloud Computing is taking off, the presence of
high performance interactive Internet applications is exploding.
By nature, these applications require responsive client-server data
exchange and lossless, in-order delivery. Previous work has shown
that by using forward error correction (FEC), it is possible to
reduce the data streaming latency caused by retransmissions of
lost packets. However, the prior schemes only send FEC packets
when there are no original packets pending transmission. In this
paper, we further expand the hybrid FEC-ARQ protocol and
show that sometimes, the transmission latency can be further
reduced by preempting original data packets with FEC packets.
We have formulated the decision of whether to send new original
data packets, FEC packets, or resend original data packets as a
transmission policy. An optimal transmission policy is selected to
minimize the delay experienced by the application subject to a
constraint on the amount of overhead. By using this optimal
policy, we significantly improve the delay performance over
straightforward FEC schemes while controlling the amount of
overhead due to FEC.

Index Terms—Real-time communications, lossless data stream-
ing, forward error correction

I. INTRODUCTION

With the rapid penetration of broadband networks and the

rise of Cloud Computing, online interactive applications are

flourishing. Web-based applications, which use the browser

as a thin client, are proliferating as the software can be

installed and maintained on centralized servers as opposed

to distributing the software on potentially millions of client

computers. Some examples of web applications are wikis,

online auctions, web-mail, and online retail sales. Software as

a service (SAAS) is projected to grow to $15 billion by 2012

[1], increasing its share in the enterprise software market from

10.7% in 2007 to 18.2% in 2012. As another example, multi-

player online games are seeing rapid adoption as well. Many

online games have associated online communities, making

them a form of social activity beyond single player games.

Also, the rising popularity of Flash/Silverlight/HTML5 and

Java has led to an Internet revolution providing a unified

platform to deliver streaming audio, video, and other forms

of interactivity to the client.

One crucial aspect that affects the user experience of an in-

teractive software application is its responsiveness. Whenever

the client sends an input (e.g keyboard/mouse commands), the

requests must be sent to the server in a distant data center,

which processes the incoming commands, and then sends

updated data, audio, or video back to the client for rendering.
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TABLE I
MEDIA STREAMING VS INTERACTIVE APP VS FILE DELIVERY

Media streaming Interactive App File delivery

Strict deadline Delay sensitive No deadline

Best effort Reliable delivery Reliable delivery
No ordering In-order In-order
Low delay Delay-aware Delay agnostic

The responsiveness of the application is directly related to the

timely interchange of the request and the response between

the client and the server.

Unlike interactive multimedia applications, such as VoIP

and video conferencing, most interactive software applications

operate as a state machine. Therefore, the data has to be

delivered losslessly and in-order so that the client and server

state are in sync. TCP (Transmission Control Protocol) pro-

vides reliable and ordered delivery of content over the network

and thus is commonly used. However, TCP and its variants

(such as [2]–[4]) were designed from the start to handle bulk

data transfer (file download / static web page download), and

therefore optimizes throughput, while making no attempt to

minimize the delay experienced by individual packets. Its use

of packet retransmission upon loss (ARQ) leads to higher

delay on individual packets when loss is present. This can

lead to poor performance for interactive applications.

A. Related Work

There has been a lot of previous work on improving the

quality of real-time media (audio/video) applications. How-

ever, we note that there are different delay and reliability

requirements when dealing with interactive software applica-

tions. We summarize the differences of the quality of service

requirements between interactive software applications vs. that

of file delivery and media streaming in Table I-A.

Note that many semi-interactive media applications with an

end-to-end (E2E) delay tolerance of multiple-seconds, such

as video on demand (VOD) or internet TV, actually belong

to the same category as file delivery. As these applications

can typically build up a client buffer of several seconds worth

of content and simply use retransmissions to combat packet

losses, the traditional TCP algorithms work fine. In addition

modern streaming solutions such as Smooth Streaming start

with small initial buffers [5], [6] and avoid initial startup

latencies. However, interactive applications, such as online

game, remote desktop, and web applications, have an end-to-

end delay requirement of only hundreds of milliseconds. With
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such stringent E2E delay requirements, the increased latency

caused by a retransmission becomes significant.

Although we can attempt to use delay sensitive congestion

control strategies such as [7] to minimize congestion induced

packet loss, non congestion-induced packet loss is still fairly

prevalent in the internet, especially on wireless links where the

signal-to-noise ratio (SNR) may be sometimes low, or in long

distance, cross continent Internet links [8], [9]. In addition,

when the interactive application is sharing a bottleneck with

a flow using a loss based congestion control such as TCP, it

may experience congestion induced packet loss as well [10],

[11].

An effective technology to reduce the delay caused by

packet loss is Forward Error Correction (FEC), that is, sending

additional encoded packets to protect the data packets. In

congestion induced packet loss cases, sending FEC packets

will result in the reduction of the rate that can be used to

send source (innovative data) packets since the overall rate

into the network has to be held constant in order to avoid

further congestion induced loss. However, a lower source rate

with lower delay may still be preferable for many interactive

cases where the source has some level of rate control.

FEC has been promoted widely in media (audio and video)

streaming applications, e.g., in [12]–[16], and has been used

in practice in interactive (VoIP/conferencing scenarios) and

in multicast / broadcast media distribution. There has also

been work in optimizing proactive retransmissions for media

transmission so as to minimize distortion subject to a rate

constraint, where distortion is caused by lost packets as well as

packets which exceed their deadline [17]. However, the use of

proactive retransmissions or FEC in protecting reliable lossless

data (such as in interactive software or web applications) has

been less common.

In [18], Rizzo and Vicisano have used FEC to support reli-

able multicast thereby reducing the bandwidth usage needed.

In [19], Sundararajan et. al. describe how to modify TCP by

using random linear codes to protect against packet loss over

the network. The idea is to retain all existing TCP mechanisms

for congestion control and triggering of retransmission, but

apply FEC (more specifically, random linear codes across

all data in the window) at the sender and receiver, thereby

masking loss in the network and improving responsiveness.

In [20], we have optimized FEC transmission strategy but for

lossy online game data with a deadline constraint. However,

none of the previous work has concentrated on finding an

optimal transmission strategy for delay minimization for real-

time lossless interactive data.

B. Contributions

This paper combines and extends a series of our previous

works, such as [21] and [22], in which we have developed a

hybrid FEC-ARQ protocol for optimized sequential (in-order)

delivery. Our protocol is functionally compatible with TCP,

though it is not packet-level compatible. Whenever a trans-

mission opportunity arises, the protocol will either retransmit

a lost packet, send a new packet (if present), or send an FEC

packet. The naive approach, adopted in the earlier work [21],
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Fig. 1. Block Diagram.

is to simply opportunistically send FEC packets whenever

there is a “free” transmission opportunity. Moreover, the FEC

packet in this work is simply a linear combinations of all

unacknowledged source packets. However, in the later work

[22], we showed that only sending FEC packets when there are

“free” transmission opportunities is not an optimal solution. In

certain situations, e.g., in networks with high packet loss ratio,

or when the traffic is bursty, or in congested cases (when the

maximum application rate is higher than the network capacity),

it sometimes makes sense to preempt sending a new source

packet with an FEC packet of previously sent source packets.

Although the source packets waiting in the sender queue get

delayed, the overall delay experienced by the application can

be reduced. We also showed that sometimes it makes sense to

only create an FEC packet of the first few packets rather than

all the unacknowledged packets. We formulated the problem

of figuring which packet to send as an optimized transmission

policy problem, where for each transmission opportunity, we

can choose to send one of three types of packets: 1) a new

source packet, 2) an FEC packet, or 3) a resent packet.

Though some of this paper covers similar material as

discussed in [21] and [22], this paper is able to explain the

algorithm in greater detail and discuss more corner cases of

the algorithm. In particular this paper presents the following

contributions.

• We show an analysis of how to modify the cost function

to take into account variable transmission rate and delay.

• This paper also presents new results which validate that

the proposed algorithm runs well under real network

conditions by using data from a real network trace as

opposed to just a simulated network channel with random

loss and fixed delay.

• We show detailed experiments that evaluate how the

performance of our protocol (delay, overhead, and appli-

cation bitrate) are affected as a function of channel loss

rate as well as burstiness of the application traffic.

The rest of the paper is organized as follows. In Sec. II,

we go over the transmission strategy in detail, explaining the

definitions of overhead and choice of packets and policies. The

cost function is explained in Sec. II-B and the definition of

overhead and computation of the overhead packets is discussed

in Sec III. In Sec. IV, we show detailed simulation results to

demonstrate the effectiveness of the proposed scheme.

II. TRANSMISSION STRATEGY

Fig. 1 shows a block diagram of a typical network setup

of an interactive application that uses our proposed protocol.

Since our protocol is functionally compatible with TCP, it may



IEEE TRANSACTIONS ON MULTIMEDIA 3

be used by any application that is currently using TCP but

demands responsiveness and low delay. The sender application

produces original source packets to send to the receiver. These

packets typically come in a burst and consist of data which

the receiver will process in order. The packets are sent to the

transport module. The transport module typically has a buffer

to temporarily hold the packets. The packets leave the buffer

only when they have been acknowledged by the receiver. If

the sending buffer is full, the sending application receives

feedback of this event from the transport module and reduces

its sending rate. For example, for an application that is sending

audio/video, it can re-compress the audio/video at a lower bit

rate. For game applications, it can reduce the game status

update interval to reduce the sending rate. However, once

the packets enter the transport module’s buffer, they must be

delivered losslessly to the receiver.

The transport module consists of two components. One is

the congestion control module which estimates the available

bandwidth in the communications channel, determines the

current sending rate, and backs off (reduces sending rate)

when congestion is detected. It tries to find a fair share of the

bandwidth for the sending application while trying to minimize

self congestion induced loss and queuing delay. The hybrid

FEC-ARQ protocol developed in this paper can work with

many existing congestion control modules, e.g., TFRC rate

control. The second module is a transmission strategy module.

It determines which type of packet to send at each transmission

opportunity.

Since delay is the most important factor in determining

the perceived user performance of interactive applications, the

overarching goal for the transport module is to minimize the

expected delay incurred by each packet while ensuring reliable

in-order delivery. The delay incurred by the packets has several

components – e.g., waiting time in the sender’s queue, propa-

gation delay, network queuing delay, retransmission delay, and

decoding delay if a coding scheme is used. The requirement

of in-order delivery can also cause additional delay as a packet

may need to wait for prior missing packets to be delivered or

decoded.

For the following discussion, we define original packets as

the data packets which the application wishes to send from

the sender to the receiver. For a stream with an in-order

reliable delivery requirement, original packet i is defined to

be sequentially decodable (i.e. usable) if and only if it and all

prior packets j ≤ i are delivered or decoded. Let sequential

decodability delay (SDD) refer to the time span between when

a packet enters the sender queue (from the application) to

the time it becomes sequentially decodable. This delay is

important for many interactive software applications which

require reliable, in-order delivery. Many software applications

operate as a state machine and thus a packet is useless until it

and all the previous packets have been reliably received. SDD

is the measure which essentially captures this delay metric.

Thus, the lower the SDD, the better the perceived performance

for such applications.

Let coded packets refer to the packets that actually enter

the network. These packets can be original, FEC packets, or

resent packets. Let transmission delay be the delay sending
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Fig. 2. Timeline. The first row shows original packets. The first three original
packets have been sent, but are not necessarily decodable. The last three
original packets have not yet been sent. At time τ [n], the nth coded packet
is generated which reaches the receiver after ∆[n] time. The coded packet
generated at time n can either be a linear combination of the some of the
first three original packets which have already been sent B[n] to D[n] − 1
(an FEC packet) or an original packet which is the original packet D[n].

these coded packets from the sender to the receiver. This delay

consists of the network propagation delay and queuing delay.

The SDD on the original packets is a function of transmission

delay incurred by the coded packets as well as loss rate

suffered by the coded packets and the coding strategy being

used.

A. Choice of packets and policies

The transmission strategy can send one of three types of

packets: original packet, FEC packet, or resent packet. The

FEC packets consist of linear combinations (over a Galois

field) of existing unacknowledged (undecodable) packets in

the sender queue. Let x[l] be the lth original source packet

which is represented as a vector of bytes, each of which

is an element in GF (28). Then, if y[k] is the kth packet

sent from the sender to the receiver, it can be written as

y[k] =
∑e[k]

l=b[k] fk,lx[l] = f∗kx, where fk,l are coefficients

from GF (28), b[k] is the first packet in the linear combination,

and e[k] is the last packet. If an original packet is sent, then

y[k] = x[b[k]], for some b[k] and e[k] = b[k]. Because of the

in-order requirement, it can be shown that for FEC packets,

without loss of optimality (in terms of SDD), b[k] can be

assumed to be the index of the first undecoded original packet

in the sender queue. The transmission strategy chooses from

amongst the following three transmission policies.

• Sending a new source packet without coding.

• Sending an FEC packet of only the first certain number

of undecoded packets.

• Resending an already sent packet which has timed out or

been negatively acknowledged.

B. Cost function used to decide amongst policies

At any given transmission opportunity, the cost that we use

to decide amongst the various policies is to minimize the

expected SDD. For our discussion, we define the following

terms, which are shown in the timeline in Fig. 2. The timeline

shows a queue of original packets in the first row. The second

row shows an coded packet being generated. This coded packet

can be either an FEC packet (of the first three original packets)

or an original packet (the fourth packet in the queue). The

coded packet then reaches the destination after some time

(shown in the third row). The figure defines the following

terms.

• n is the current transmission opportunity.
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• B[n] is the index of the first unacknowledged packet in

the sender queue prior to transmission n.

• E[n] is the index of the last packet in the sender’s queue.

• D[n] ≤ E[n] is the index of the first packet which has

not yet been sent.

• τ [k] is the time when coded packet k leaves the sender.

• ∆[k] is the transmission delay experienced by coded

packet k (propagation delay plus queuing delay).

• γl is the time original packet l enters the sender queue.

The expected SDD for original packet l can be written as

Dl =
∑

δ∈D
δ Prob(SDD = δ), where D is the set of possible

values for SDD. Original packets can only be decoded once a

coded packet is received by the receiver. Suppose coded packet

k leaves the receiver at time τ [k] and reaches the receiver at

time τ [k] + ∆[k]. If this coded packet allows a previously

sequentially undecodable original packet l to now become

sequentially decodable, then original packet l experiences an

SDD of τ [k]+∆[k]−γl. If pl[k] is the probability that packet

l is sequentially decodable using coded packets up to k, then

the probability of the SDD being τ [k]+∆[k]− γl is given by

pl[k] − pl[k − 1] (probability that is decodable now minus

the probability that it was already decodable before). The

sequential decodability probability can be computed exactly

with reasonable complexity as shown in [21]. This gives

Dl =

∞∑

k=0

(pl[k]− pl[k − 1])(τ [k] + ∆[k]− γl). (1)

The SDD is affected by the transmission delay through the

term ∆[k], the time spent in the sender queue by τ [k] − γl,

and the network loss and coding strategy by pl[k].
We assume that the congestion control module is able

to achieve a smooth transmission rate and queuing delay

as in [7], Thus τ [k + 1] − τ [k] = T (the time between

successive transmission opportunities is relatively constant)

and ∆[k] = ∆ (transmission delay is stable and approaches

the network propagation plus queuing delay). In Sec. II-C, we

will show that even varying rate and delay does not change

the optimization problem. Then, rearranging terms in (1), we

get

Dl = (τ [sl] + ∆− γl) +
∞∑

k=sl

(1− pl[k])T, (2)

where sl is the first packet transmission opportunity that comes

after packet l enters the queue, that is sl = min{j : τ [j] ≥
γl}. Intuitively, we can view this expected delay in terms of

waiting times. With probability 1, packet l waits until the first

transmission opportunity that comes after it enters the queue,

τ [sl] − γl. Thus the minimum SDD is given by this waiting

time plus the transmission delay ∆ giving the first term in

Eqn. 2, τ [sl] + ∆− γl. However, since coded packets may be

lost and depending on the transmission strategy, it may have to

wait for future transmission opportunities. With probability 1−
pl[k] it waits an additional time of T for the next transmission

opportunity.

At a given transmission opportunity n for M original

packets, γl and τ [sl] are the same for all transmission policies.

We can remove these common terms to obtain the cost function

to be optimized as

C =
M−1∑

l=0

∞∑

k=max(sl,n)

(1− pl[k]). (3)

That is we wish to find a transmission policy such that the

sum of sequentially undecodable packets is minimized. This

results in minimizing the expected SDD.

To simplify further, we only consider source packets starting

from l = B[n] (all other packets have already been decoded)

and ending at E[n] which is the last packet entering the sender

queue. We could also consider other packets past E[n] that will

enter the sender’s queue, but this will be application-specific.

For each packet n, we only consider certain terms in the

summation over k. For packets which currently have non-zero

probability of decodability (pl[n− 1] 6= 0), we only consider

the first term in the summation, and for original packets which

have pl[n − 1] = 0, we look at the first Ll terms which is

defined to be the expected time till pl becomes non-zero. This

gives,

C ≈

D[n]−1∑

l=B[n]

(1− pl[n]) +

E[n]∑

l=D[n]

n+Ll−1∑

k=n

1. (4)

Ll can also be estimated as the expected number of transmis-

sion opportunities needed to successfully deliver all packets

prior to original packet l. Ll can be computed using the current

expected number of missing packets Qn and the current loss

estimate ǫ as

Ll =
Qn + l −D[n]

1− ǫ
. (5)

The expected number of missing packets can easily be com-

puted from the probabilities pl. If we remove common terms

and simplify, we get the following cost functions for sending

an FEC and an original packet respectively

CFEC =

D[n]−1∑

l=B[n]

(1 − pl[n]) +
(E[n]−D[n] + 1)(Qn + 1)

1− ǫ
,

CORIG =

D[n]∑

l=B[n]

(1− pl[n]) +
(E[n]−D[n])Qn

1− ǫ
. (6)

pl[n] is the new probability of sequential decodability if that

packet is sent and Qn is the new value for the expected number

of missing packets up to the last packet sent – if an FEC

packet is sent, the last packet sent stays at D[n] and if an

original packet is sent, it increases to D[n]+ 1. Using (6), we

compute the cost for each possible FEC packet (each value of

e[k] = B[n], B[n] + 1, . . . , D[n] − 1, with b[k] = B[n]) and

for an original packet (b[k] = e[k] = D[n]) and send the one

with minimum cost. The case when b[k] = e[k] = B[n] is

evaluating the benefit of retransmitting the first packet in the

sent queue, and in cases when packets in the sent queue have

timed out, the algorithm will choose such a strategy.
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Fig. 3. Performance of loss rate estimator.

C. Effect of varying channel characteristics

In practice, the transmission rate and delay of the channel

may not be constant. In this section we show that our opti-

mization algorithm is still valid in this case. If the rate and

delay are varying and not constant as assumed before, we can

write Eqn. 2 as

Dl = (τ [sl] + ∆[sl]− γl) +
∞∑

k=sl

(1 − pl[k])(T [k] + ∆[k + 1]−∆[k]), (7)

where T [k] is the spacing between transmission opportunity k
and k + 1, and ∆[k] is the transmission delay experienced by

coded packet k.
When we are considering sending coded packet n, then

from the standpoint of optimization, the previous decisions

cannot be changed and only affect the expected delay. The

cost function to optimize can then be written as

C =

M−1∑

l=0

∞∑

k=max(sl,n)

(1− pl[k])(T [k] + ∆[k + 1]−∆[k]). (8)

Since the summation is only over future packets k ≥ n, we

only need to know a value for ∆ and T for future packets.

The best estimate for these is the same, i.e. there is no reason

to use different ∆[k] or T [k] value for each k, and thus the

cost function to optimize remains the same as in Eqn. 3.

D. Estimating Loss Rate

The value for ǫ used by (6) is estimated using a sliding

window of certain number of packets into the past. The loss

for this window is computed (ǫW ) and the overall loss rate

is updated using ǫ ← ηǫ + (1 − η)ǫW using some weight η.

In our simulations, we use η = 0.9. In Fig. 3, we show the

accuracy of the loss rate estimate.

E. Example of cost computation

As an example, consider ǫ = 0.1, B[n] = 1, D[n] = 5,

E[n] = 6. That is, there are six packets in the burst, out of

which four have been sent but not yet acknowledged as being

decodable. The values for pl[n− 1] would be the following.

l 1 2 3 4 5 6

pl 0.9000 0.8100 0.7290 0.6561 0 0

Then, depending on whether we send an FEC packet which

encompasses all the original source packets or whether we

send a new original packet (packet 5), pl would become

FEC 0.9656 0.9412 0.9258 0.9185 0 0

ORIG 0.9000 0.8100 0.7290 0.6561 0.5905 0.

For FEC, the expected number of missing packets with index

≤ 4 would become Qn = 0.0905, and for an original packet

the expected number of missing packets with index ≤ 5 would

be Qn = 0.5000. Using (6), we would get CFEC = 3.8838,

and CORIG = 2.4255. Thus, in this case between the two, we

should send the original packet. As another example, suppose

the loss rate is still 0.1, but now B[n] = 1, D[n] = 11, and

E[n] = 11. That is, almost the entire burst has been sent,

but no packets have yet been acknowledged. Using the same

computations as above, the costs are CFEC = 5.3622 and

CORIG = 6.0465, and thus here we preempt a source packet

to send an FEC packet. In general, the advantage of sending

an FEC packet increases as loss rate increases and as the ratio

of unacknowledged packets (in-flight) to waiting packets (in

sender queue) increases.

III. OVERHEAD

The optimization presented in the previous section was

simply to minimize the average packet delay subject to the

current buffer conditions presented (packets waiting in the

sender queue). The current buffer conditions are a function of

both the application traffic pattern as well as the transmission

rate. In this section, we analyze additional constraints which

relate to the amount of “overhead” which we are allowed to

use.

The normalized overhead (referred to as just “overhead”) is

defined as the number of actual packets sent on the network

minus the minimum number of packets that need to be sent

divided by the minimum number of packets. Since we require

lossless transmission, the minimum number of packets that

need to be sent is simply the number of original packets plus

the number of lost packets. For example, if we wish to send

95 packets in a network with 5% packet loss, then sending

100 packets is zero overhead (since 5 out of 100 packets

will be lost). If we send 110 packets corresponding to the

95 original source packets, then we say that the overhead is

0.10 (10/(95+5)), that is 10 additional packets are sent for the

minimum 100 packets that need to be sent.

If the feedback on whether a packet is received or lost

is accurate, we note that only using retransmissions has a

overhead of zero since only those packets which are actually

lost are retransmitted. For example if the client has sufficient

buffer relative to the network round-trip time (RTT) (say 5

seconds of buffer with 200ms RTT), then it can simply re-

request (using ARQ) the missing packets. For any reasonable

loss probability, the packet will arrive within the buffered time

period. For unicast scenarios with sufficient client buffer and

where the server is not overloaded, this is actually the best

way to deliver content.

For interactive scenarios, where the client cannot afford

a significant buffer, hybrid FEC-ARQ is used to improve

performance. Since there is no way to know which packets
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are actually lost, the use of FEC packets will result in some

overhead.

In the above scenario, if the source wishes to send 95

packets in a certain unit of time (say 1 second), and if the

channel allows for 110 packets, then the overhead can be at

least 10% (with no reduction in source rate) and can even be

higher if we allow it (at the expense of source rate). However,

if the overhead constraint is set to 10%, then the allocation

is fairly straightforward (simply let the application transmit at

full rate and use 15 packets for FEC and ARQ). If the channel

rate is reduced to 105 packets / sec, then we can achieve an

overhead of at least 5%. If the constraint allows for up to

10%, then we can achieve any overhead between 5%-10%, by

sacrificing source rate to achieve better delay performance. If

the channel rate is further reduced (say to 90 packets/sec), and

if our constraint is still up to 10% overhead, then we can use

anywhere between 0-10% overhead – in this case, we have to

reduce source rate even without FEC.

If we don’t consider source characteristics, it may seem that

simply maximizing the overhead (and minimizing the rate)

may result in minimal delay. However, this results in a low

application source rate. Here we consider applications which

wish to maximize their source rate by giving them a buffer

(the sender queue). That is the application simply pushes as

many packets as it can into a buffer of a certain size. The goal

of the optimization strategy is to try to minimize the delay for

all packets currently in the buffer.

A. Computing FEC Overhead

An overhead constraint is needed to ensure that the percent-

age of non-innovative packets (overhead) does not take more

than a certain amount. This constraint is met by simply looking

at estimated overhead that any given FEC packet will give. If

sending that particular FEC packet results in the constraint

being violated, it is simply removed from consideration.

The overhead can be computed using a deterministic term

(based upon feedback) and a probabilistic term for the in-flight

coded packets (those which have not been acknowledged or

timed out). At a given transmission opportunity n, let w be

the number of packets that are known to the sender to have

been useless by the receiver (from feedback), and let t be

the total number of packets received (from feedback). We can

compute the expected fraction of packets which are overhead

(more than the needed amount defined as FEC packets minus

lost packets) as

u =
w +

∑
k∈F

pe[k][k − 1]

(t + |F|)− (w +
∑

k∈F
pe[k][k − 1])

, (9)

where F is the set of in-flight coded packets, and |F| is the

number of such packets. The probability pe[k][k − 1] is the

probability that we were already able to decode up to e[k]
given transmissions up to k−1, and thus is the probability that

the kth coded packet with ending position e[k] was useless.

For any given packet that we are considering on transmitting

at n, we can update the set F , and can calculate an updated

value of u. We control the amount of overhead u to below a

certain threshold UMAX . If sending a particular FEC packet

causes u to be above this threshold, we do not consider it for

transmission. We note that sending original packets for the

first time and resending lost packets cannot increase u.

We believe that this definition of overhead – as a fraction

of overhead packets to needed packets – is more useful than

the typical definition of redundancy which is the fraction of

FEC packets to source packets. For example, if the loss rate

is 5% and if 5% of the total packets are FEC, then most of

the FEC packets are actually used to recover lost packets, and

thus there is no overhead.

IV. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed

hybrid FEC-ARQ protocol and transmission policy optimiza-

tion. We simulate the setup as shown in Fig. 1. The notation

used in the experiments is as follows. The application produces

P packets of size V bits with an inter-burst gap of G
seconds. This gives a maximum application source rate of

S = PB/G bits/sec. We assume that if the source rate

exceeds network bandwidth and the sending buffer is full,

the application rate control module will kick in, and excess

packets will be dropped by the application. Once packets enter

the transmission buffer queue, they cannot be dropped by the

network and must be received on the other end. The sending

buffer size is W packets. The congestion control module

provides a transmission opportunity to send a single V -bit

packet every T seconds giving a network transmission rate of

R = V/T bits/sec. We assume that the channel has a delay

of D seconds (round trip time) and a loss rate of ǫ. UMAX is

the maximum amount of overhead that is allowed.

For all the experiments, we show two figures, one is the cu-

mulative density function (CDF) of the sequential decodability

delay (SDD), and the other is the CDF of the instantaneous

application bit rate defined as the number of packets from the

burst that are sent divided by the spacing between the bursts.

We compare the following four transmission strategies.

• The “lower bound”. This is the performance if the sender

has immediate knowledge of which packets will be lost

and retransmits them immediately at the next transmis-

sion opportunity. This gives the lowest SDD for a given

packet if given the same series of loss events and if the

sender buffer queue is equally empty. However, in some

cases, a certain percentile SDD may appear larger since

this strategy results in a higher source transmission rate

(closer to capacity) and thus some packets wait longer in

the sender queue.

• The strategy using only retransmission (ARQ).

• The strategy adopted in [21]. This is referred to as the

“no cost” FEC or opportunistic FEC. In this strategy,

an FEC packet of all unacknowledged source packets is

sent whenever the sender queue is empty. Otherwise an

original packet is sent.

• The cost based transmission strategy developed in this

paper.

We restate that for all four strategies, the total transmission

rate R is identical. The additional overhead introduced by FEC

packets is compensated for by a reduction in source rate. The
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TABLE II
SDD PERCENTILES (90%, 95%, 99%) FOR W = 16 PACKETS,

UMAX = 10, S = 500KBPS, R = 400KBPS. ǫ IS THE LOSS RATE, D IS

THE ROUND TRIP DELAY IN SEC. TYPE SHOWS THE STRATEGY BEING

USED, “NO COST” REFERS TO THE OPPORTUNISTIC FEC STRATEGY IN

[21], “COST” REFERS TO FEC WITH USE OF COST FUNCTION, AND

“ARQ” REFERS TO RETRANSMISSION ONLY. “LB” IS THE LOWER BOUND

OBTAINED FROM AN “ORACLE” WHICH HAS INFORMATION ON EXACTLY

WHICH PACKETS WILL BE LOST, AND THUS THEY ARE IMMEDIATELY

RETRANSMITTED. U IS THE ACTUAL FRACTION OF OVERHEAD PACKETS.

ǫ D Type 90% 95% 99% U

0.05 0.15 ARQ 0.47 0.51 0.63 0.00
0.05 0.15 No Cost 0.43 0.47 0.51 0.11
0.05 0.15 Cost 0.37 0.41 0.51 0.11
0.05 0.15 LB 0.33 0.33 0.37 0.00
0.15 0.15 ARQ 0.63 0.71 1.01 0.00
0.15 0.15 No Cost 0.53 0.59 0.67 0.11
0.15 0.15 Cost 0.47 0.53 0.63 0.22
0.15 0.15 LB 0.37 0.39 0.43 0.00
0.15 0.40 ARQ 1.64 1.79 2.55 0.00
0.15 0.40 No Cost 0.76 0.80 1.46 0.29
0.15 0.40 Cost 0.56 0.58 0.68 0.39
0.15 0.40 LB 0.52 0.54 0.58 0.00

TABLE III
SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FOR W = 16

PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS.

ǫ D Type 90% 95% 99% U

0.05 0.15 ARQ 0.46 0.58 0.68 0.00
0.05 0.15 No Cost 0.36 0.38 0.40 0.28
0.05 0.15 Cost 0.36 0.38 0.41 0.30
0.05 0.15 LB 0.34 0.35 0.38 0.00
0.15 0.15 ARQ 0.70 0.86 1.15 0.00
0.15 0.15 No Cost 0.41 0.54 0.66 0.18
0.15 0.15 Cost 0.46 0.50 0.62 0.24
0.15 0.15 LB 0.37 0.40 0.44 0.00
0.15 0.40 ARQ 1.67 1.77 3.10 0.00
0.15 0.40 No Cost 0.65 0.66 0.83 0.33
0.15 0.40 Cost 0.62 0.65 0.75 0.54
0.15 0.40 LB 0.58 0.61 0.66 0.00

main goal is to show that intelligent insertion of FEC using the

cost function is better than simple opportunistic FEC insertion.

For all simulations, we set V = 8000 bits (1KB) and

P = 10 packets (the burst length). We first show the achievable

performance if we are allowed to send as much FEC as the

network allows (set the overhead constraint UMAX = 10) in

a congested network, when S = 500Kbps, R = 400Kbps,

D = 0.15sec, ǫ = 0.05, and W = 16packets. We note that

the total sending rate is constrained by the network bandwidth,

and the source application will reduce its sending rate through

notification of the sending buffer being full. The results are

TABLE IV
SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FOR W = 16

PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS, USING REAL

COLLECTED NETWORK TRACES. THIS PARTICULAR TRACE FROM NORTH

AMERICA TO EUROPE HAD AN AVERAGE LOSS RATE OF 5% AND

RTT=200MS.

ǫ D Type 90% 95% 99% U

0.05 0.20 ARQ 0.34 0.40 0.57 0.02
0.05 0.20 No Cost 0.32 0.35 0.48 0.10
0.05 0.20 Cost 0.31 0.34 0.39 0.09
0.05 0.20 LB 0.26 0.28 0.31 0.00

shown in Fig. 4 and summarized in Table IV. The 90th

percentile of SDD reduces by over 14% when using the cost

function vs. not using the cost function, the 95th percentile

by over 12%, and the 99th percentile is about the same. The

actual percentage of overhead packets is 11.2%. We also see

that the application bit rate is smoother, with the application

capable of delivering a bit rate of at least 300Kbps 90% of

the time, rather that 70% of the time if the cost function is

not used. This is due to the fact that lowering SDD results in

the sender queue being emptier.

From Fig. 4, we can also see that retransmissions alone

(labeled ARQ) and opportunistic FEC (labeled FEC) also have

almost 20% cases where the bitrate is 500kbps, whereas the

FEC with cost function only has about 8% of such cases.

The reason for ARQ having a higher percentage of cases with

larger bitrate is that ARQ has no overhead, that is all packets

are useful. So the overall throughput for ARQ systems must

be higher than a system with FEC (at the expense of delay).

The reason for opportunistic FEC and ARQ systems having a

larger percentage of cases with bitrate 500kbps than even the

“lower bound” case is that opportunistic FEC and ARQ often

result in some packets being blocked (head of line blocking)

due to a previous packet which has not yet been delivered. This

blocking causes the bitrate to reduce since the sender buffer

is full. However, once the previous packet which is blocking

future packets is received, it clears the sender buffer, causing

the future burst to be transmitted at a higher rate. FEC with

cost and “lower bound” are quicker at clearing such blocks

and thus have fewer cases where the sender buffer empties

quickly. Thus both the SDD and bitrate have less variance as

well.

Keeping other parameters the same, if we increase W to 32

packets, we observe that few FEC packets are sent (regardless

of whether we use the cost function or not). The reason is that

since S > T , the buffer is almost always full, and since W is

relatively large, the penalty for sending FEC packets is high

since E[n]−D[n] in Eqn. (6) is large.

In the second experiment, we increase the loss rate to ǫ =
0.15 (see Fig. 5 and Table IV). From Table IV, we observe that

cost based transmission policy reduces 90th percentile SDD

by 11%, 95th percentile SDD by 10%, and 99th percentile

SDD by 6%. The application sending bit rate is also much

smoother with the cost function than without. However, both

of the schemes reach a median (50th percentile) bit rate of

about 250 kbps.

In the third experiment, we further increase delay to D =
0.4seconds. From Fig. 6, we see that by using the cost

function, we are able to achieve a result very close to the

lower bound (in terms of SDD and application bit rate).

From Table IV, we can see that this comes at the expense

of increasing the percentage of overhead packets to close to

40%.

In the fourth experiment, we consider the case when the

network is not congested (S < R). We reduce the the

maximum source rate S to below capacity (300 kbps) and

keep other parameters the same. We observe that the cost

function based transmission policy gains no advantage over

the opportunistic FEC (see Fig. 7 and Table IV). Opportunistic
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Fig. 4. Results with W = 16packets, ǫ =
5%, D = 0.15sec. (a) CDF of SDD, (b) CDF
of application bitrate.
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Fig. 5. Results with W = 16packets, ǫ =
15%, D = 0.15sec. (a) CDF of SDD, (b)
CDF of application bitrate.
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Fig. 6. Results with W = 16packets, ǫ =
15%, D = 0.40sec. (a) CDF of SDD, (b)
CDF of application bitrate.
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Fig. 7. Results with W = 16packets, ǫ =
15%, D = 0.40sec, but source rate lowered
to below capacity (300Kbps).
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Fig. 8. Results with W = 16packets, Loss
rate and round trip time determined by results
collected from real network packet traces.
Average loss rate for this trace was 5% and
average round-trip time was approx. 200ms.
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Fig. 9. Results showing effect of
different UMAX .
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Fig. 10. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of loss rate.
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Fig. 11. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of burst length.

FEC is able to achieve a result close to the lower bound

especially in the high-loss, high-delay case where we have

spare capacity. This confirms the results presented in [21].

This is basically a case where even without any additional

constraints, we can use up to 12% overhead.

Finally, in Fig. 9, we show the effect of modifying the

fraction of overhead packets allowed, UMAX , in the ǫ = 0.15,

D = 0.4sec case. We see that the SDD performance keeps

getting better as UMAX is increased (at the expense of reduc-

ing application rate). We note that although the UMAX = 10
case is intended to show the best case, the actual overhead for

this is only U = 0.39.

A. Results using real network trace

In Fig. 8 and in Table IV, we show the performance using

real packet trace to drive the simulation. In the trace collection,

we connect from one machine in North America to one in

Europe, and measure RTT for each packet sent, and whether

the packet is received or not. The average loss rate for this trace

was 5% and the RTT was approximately 200ms. However,

the losses were not necessarily random, and there were some

periods of burst loss. We show the statistics of the delay and

loss pattern in Fig. 12. We see that the delay distribution along

with the distribution of the instantaneous loss rate. Although

the average loss rate is 5%, sometimes the loss rate is small,

while at other times it is up to 12%. We see that if we use

this trace, the results are similar and we still see gains in the

SDD. The SDD reduces from 600ms in pure ARQ case to

500ms in opportunistic FEC to 400ms when using the cost

based optimization presented here.

B. Function of loss rate

In Fig. 10, we show how the overhead, the 99% SDD,

and application bitrate are affected by loss rate (all other

parameters are same as in the original experiment) for the

cost based scheme and the opportunistic FEC scheme. We

see that in as the loss rate increases, so does the overhead

to minimize delay. This comes of course at the expense of

application bitrate. The opportunistic FEC reverts back to a

pure ARQ scheme as loss rate increases as there are very

few free opportunities to send FEC packets (maximum source

rate is much larger than capacity). Thus, we also see that the

improvement in SDD from using the cost function increases

as loss rate increases.

C. Function of burst length

In Fig. 11, we show how the overhead, the 99% SDD, and

application bitrate are affected by burst length for the cost

based scheme and the opportunistic FEC scheme. We note

that as burst length increases, the advantage of the cost based

scheme over the opportunistic scheme also increases. This is

because the cost based scheme will periodically insert FEC

packets into the burst whereas the opportunistic FEC will wait

for the entire burst to finish.
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Fig. 12. Statistics for real trace, (a) Shows PDF of delay measurements, (b) PDF of loss rate averaged over sliding window of 32 packets.

V. CONCLUSION

We have presented a hybrid FEC-ARQ protocol that is

functionally compatible with TCP but optimized for low-delay

data delivery. The protocol uses a cost based transmission

strategy to optimally choose amongst transmission policies

of sending 1) a source packet, 2) an FEC packet of the

first certain number of undecoded packets, and 3) a resent

packet which has timed out or been negatively acknowledged.

Through extensive experimental results, we have shown that

the proposed scheme achieves better delay performance than

the opportunistic FEC scheme especially for cases when the

application traffic is bursty, the maximum source rate exceeds

that of the network capacity, the network packet loss rate is

high, and/or the network delay is high. We have also examined

the performance of the scheme as a function of loss rate and

burstiness of the application traffic.
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