
A HYBRID FEC-ARQ PROTOCOL FOR LOW-DELAY LOSSLESS SEQUENTIAL DATA
STREAMING

Ying-zong Huang

Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Sanjeev Mehrotra, Jin Li

Communication and Collaboration Systems
Microsoft Research, Redmond, WA

ABSTRACT

Interactive Internet Applications that rely on sequential
streams for lossless data exchange often use retransmission
protocols (e.g. TCP) for reliability and the guarantee of se-
quential data ordering. More so than for bulk file transfer or
media delivery, lossless sequential streaming poses an even
greater challenge for the common problem cases of retrans-
mission protocols, such as lossy links or long network paths,
manifesting as significant latency in the interactive user ex-
perience. We propose a hybrid FEC-ARQ protocol built on a
packet streaming code that reduces to a simple strategy over
sending or resending original data packets or check packets
combining undecoded packets, based on actual network con-
ditions. Experimental results show that our proposed protocol
can significantly improve the total delay over retransmission
and other schemes that use FEC, under a range of bandwidth
and loss scenarios.

1. INTRODUCTION

Cloud Computing is taking off, and promises world-wide ef-
ficient and inexpensive computing and communications for
individuals and businesses. Most Cloud Computing applica-
tions are interactive Internet Applications that functionon the
assumption of sequential streaming of reliable and in-order
data delivery. That is, when a client A is connected to a server
B, it is assumed that the data exchanged is guaranteed to arrive
perfectly at the other side in the same order that it is written.
This greatly simplifies the programming of the client and the
server, as the task of state synchronization between the client
and the servers or among multiple clients becomes straight-
forward, much like in single desktop computing.

As one of the core Internet protocols, TCP (Transmis-
sion Control Protocol) provides the sequential stream deliv-
ery required by many of the Cloud Computing applications.
TCP relies on positive acknowledgement with retransmission
to guarantee the reliability of data delivery. The technique
is often called ARQ (Automatic Repeat reQuest) in the er-
ror control literature. Unfortunately, ARQ based loss recov-
ery may incur high end-to-end delay, especially if the links
on which losses occur have long path delay. This is because

TCP only retransmits data after it receives confirmation that
data is lost, and in high path delay links, this confirmation
takes time. Moreover, a lost packet in an in-order stream ef-
fectively blocks all subsequent data from being delivered to
the upper layer application, which manifests as poor respon-
siveness for the Internet Applications, so avoiding lossesin
the first place is even more critical.

In this paper, we propose an adaptive FEC-ARQ protocol
to support low-delay sequential streaming for improved ap-
plication responsiveness. Although the concept of combining
FEC and ARQ is by no means new, our proposed protocol
is significantly different from existing hybrid FEC-ARQ lit-
eratures (e.g. [1, 2, 3, 4]). These works are concerned with
throughput and power for wireless transmission, quality man-
agement for real-time media, feedback complexity for scal-
able multicast, etc. They adopt some kind of block coding
structure in forming the FEC code (e.g. [5, 6, 7]), and op-
timize mostly average throughput, not delay of a sequential
stream. What makes our proposed FEC-ARQ unique is its
capability to cater correctly to the in-order property in sequen-
tial streaming (i.e., to make explicit and minimize cascading
delay from lost data mid-stream).

We begin with a very simple packet “streaming code” that
has the correct notion of decoding for sequential data streams.
Then we wrap a feedback-aware transmission policy around
it to create a hybrid FEC-ARQ protocol for packet erasure
channels. The proposed protocol manifests itself in the same
interface as a traditional TCP protocol, so it allows most of
the existing Internet Applications to use the protocol with
minimal modification. It also respects message boundaries
for those applications that require it. Furthermore, packets
sent using this protocol can be notionally identified (and sep-
arated) as original data packets, retransmission packets,and
checksum packets for the benefit of compatibility with poten-
tial receivers that only support original data, or only original
data and retransmission (ARQ). Finally, the protocol is exten-
sible to more complex network requirements than presented
in this paper.

The paper is organized as follows. We describe the sys-
tem model in Section 2, where we also describe the encoder
and decoder structures of the streaming code that is core to



Table 1: Notation

m: Index of the last sequentially decodable packet.
For the encoder this is the index of the last packet
known to be sequentially decodable.

s: The number of packets that are decoded. After de-
coding, the index of the last sequentially decoded
packet is given bym + s.

l: Index of source packet when determining probabil-
ity of sequential decodablity at the encoder.

k: Index of the channel packet.
n(y[k]): The LIS packet index of thekth channel packet.

P: Set of positively acknowledged channel packets.
N : Set of negatively acknowledged channel packets.
U : Set of unacknowledged channel packets.
F : Set of all consumed yet undecoded source packets.

For the encoder this is the set of packets which are
not known to be sequentially decodable.

Q: Set of unconsumed source packets waiting in the
source queue.

L: The number of undecoded source packets (L =
|F|). The maximum LIS packet index of a check
packet created by the encoder is given bym + L.

the protocol, and give some of the code’s properties. Then, in
Section 3, we describe how feedback informs the sender on
choosing a transmission policy to form a hybrid FEC-ARQ
protocol. In Section 4, we show experiments comparing the
delay performance of the proposed protocol with that of pure
ARQ under the same network conditions, followed by con-
clusions.

2. SYSTEM MODEL AND FORWARD ERROR
CORRECTION CODE

We assume that the sequential data stream consists of a se-
ries of packets, calledsource packets, of potentially variable
sizes, which must be delivered to the receiver losslessly and
in-order. Let the sequence of source packets be denoted as
x[1],x[2],x[3], ..., where each packetx[i] is represented as
a row vector of finite-field elements chosen from a suitable
Galois-FieldF . A common choice is to useF = GF (28),
which makes each finite-field element a byte in the data
stream.

Let the sequence of packets sent on the network, called
channel packets, be denoted asy[1],y[2],y[3], ..., each of
which is again a row vector of finite field elements inF . We
consider the network as an erasure channel with packet loss
probability ǫ. The network channel condition may fluctuate
over time, leading to a time-varying packet loss probability
ǫ1, ǫ2, ǫ3, ... for each packet sent over the network. At ev-
ery transmission opportunity, a channel packet is formed and
sent based upon estimated network conditions, feedback, and

transmission policies.
We define a packet to besequentially decodableif it and

all the packets upon which it depends are decodable. For a
stream with in-order requirement, packetx[i] is considered
sequentially decodable ifx[j] for j ≤ i are decoded.

Let the delay of a source packetx[i] be the amount of time
from when it becomes available at the sender, to the time it is
sequentially decodable at the receiver. In particular, this no-
tion of delay includes the delay incurred at the sender before
information inx[i] is used, the path delay in the propagation
across the network, and the delays at the decoder untilx[i]
becomes sequentially decodable, including time for feedback
and retransmission if network packet loss is severe. The prin-
cipal design goal of our system is to reduce the delay on a
high fraction of the packets to ensure good responsiveness.

Next we describe how we encode and decode. Some of
the notation we will use to index the packets and various sets
of packets is shown in Table 1. It may also be helpful to refer
to Figure 1.

Src Pkts:

Chn Pkts:

x[1] x[m]

F
︷ ︸︸ ︷

Q
︷ ︸︸ ︷

︸ ︷︷ ︸

P∪N

︸ ︷︷ ︸

U

y[1] y[r1] y[rs] y[rR]

x[n(y[rs])]

Fig. 1: A schematic diagram showing a snapshot of the sys-
tem in mid-operation. Each block represents a packet. The
past is to the left and the future is to the right. For the source
packets from the encoder’s perspective,are unconsumed
packets, are in-flight packets, and are already decoded
packets. For the channel packets from the decoder’s perspec-

tive, are unseen packets, are received packets, are
lost packets, and are packets no longer useful. The arrow
connects the channel packet with its LIS packet.

2.1. Code Structure and Encoding

Most existing hybrid FEC-ARQ systems use a block-based
forward error correction code for ease of implementation.
However, it is not simple to choose the right block size:
short block codes have lower coding delay but weaker error
correction capability, while long block codes have stronger
error correction capability but higher coding delay. In this
work, we develop a packet streaming code, which is simply a
randomly linear code that gradually combines new data with
old. The code is similar to the code proposed by Martinian
in [8] for delay-aware feedback-less systems. Although the



use of random linear codes is not particularly innovative, our
FEC-ARQ framework that incorporates an adaptation of this
code is. Our main contribution lies in the portion of the pro-
tocol that decides which channel packets to send, to minimize
delay of sequentially decoding packets – the portion of total
delay under our control.

A coding structure where sequential decodability is
needed is to always include old data. This is best explained
by the semi-infinite generator matrixG in the following
encoding example:
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Here, every channel packet is a linear combination ofall
source packets fromx[1] up to somejth source packetx[j],

y[k] =

j
∑

i=1

fk,ix[i]

wherefk,i ∈ F\{0} are randomly drawn non-zero coeffi-
cients. Here,j is the index of the last included source packet
(LIS packet) of y[k], denotedn(y[k]).

Because of sequential decodability, this coding structure
of using random linear combinations of all consumed source
packets is fully general. Specifically, if somex[i] is not de-
codable, including it in a linear combination is necessary to
help it to decode; once it is decoded, its inclusion in further
linear combinations is not a detriment because its contribution
can always be subtracted out, as will be shown in Sec 2.2.

The code we actually use makes a few modifications to the
above. Without loss of generality, suppose now thatx[m + 1]
is the first source packetnot known to be sequentially decod-
able – all prior source packets are known to be sequentially
decodable based upon acknowledgments. Obviously there is
no need to includex[1], ...,x[m] in linear combinations. Be-
sides this, another modification is illustrated in the second
encoding example that shows all channel packets with LIS
packetx[m + 1] or after:
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The first channel packety[1] is the source packetx[m + 1]
itself, the second channel packety[2] is the source packet
x[m + 2] itself, the third and fourth channel packetsy[3]
andy[4] are different linear combinations of source packets
x[m + 1] andx[m + 2], the fifth channel packet is the source
packetx[m+3], and the sixth channel packet is a linear com-
bination of packetsx[m + 1], x[m + 2] andx[m + 3]. Note
that by first channel packet, we mean the first channel packet
after the ones that have already been created.

The difference between (1) and (2) just described is that
in (2) we allow sending original source packets, in addition
to the linear combinations starting from the first packet not
known to be decoded. That is, we may sendx[j] instead of
a channel packet with LIS packetx[j], in cases where it does
not affect sequential decodability to do so.

One such case is ifx[j] is a newly consumed source
packet, hence no channel packet with LIS packetx[j] or later
has been sent.

Another case is ifx[j] is thefirst source packet known to
be not decodable. A full determination of this fact requires
feedback and probability calculations (to be discussed later),
but a simple example is if in the above example, all buty[1]
andy[5] are lost, in which case resendingx[m + 2] is al-
lowed. In general, it is necessary (but insufficient) for thefirst
transmission of the source packetx[j] to be lost forx[j] to be
undecodable.

In summary, the encoder sends two types of packets onto
the channel: the original source packet or a random linear
combination of all consumed and not-known-to-be-decoded
packets. We call the latter check packets from now on.

2.2. Decoding

Due to erasures, the receiver gets only a subset of the chan-
nel packets sent. Let the last sequentially decodable source
packet at the decoder bex[m], that is, the decoder can de-
code allx[1], ...,x[m]. A channel packety[k] is still use-
ful if its LIS packetn(y[k]) has not been decoded. The de-
coder always keeps its list of received, still useful channel
packets sorted ascending by their LIS packet index. Suppose
y[r1], ...,y[rs], ...,y[rR], (n(y[r1]) ≤ · · · ≤ n(y[rR])) are
the received, still useful channel packets.

Every time a new network packet is received, the decoder
makes an attempt to decode as many source packets as pos-
sible. For each received, still useful channel packety[k] that
is a check packet, we can remove all already decoded source
packets from its linear combination as

y′[k] = y[k] − fk,1x[1] − · · · − fk,mx[m]. (3)

Then, we can attempt to decode usingy′[r1], ...,y
′[rs],

by looking at the effective generator matrix at the decoder,
Ĝs, formed by taking rows of the original generator matrixG

corresponding to a subset of the received, still useful channel



packets, and the columnsm + 1 to n(y′[rs]). We find the
smallests such that
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
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is invertible, i.e. rank(Ĝs) = n(y′[rs]) − m.
A necessary condition iss ≥ n(y′[rs]) − m since

rank(Ĝs) ≤ s. Under most conditions, the smallest in-
vertible Ĝs is square and will result ins = n(y′[rs]) − m.
So once decoded, we can udpatem := n(y′[rs]) = m + s,
and repeat the process.

We see that (4) is the key decoding step of the receiver,
where decoding a train of source packets following the last
decoded source packetx[m] is attempted. If the rank of sub-
generator matrixĜs is to be no greater thans, then thes
channel packets used to decode the source packets must not
have linear combinations with any source packets afterx[m+
s]. The only case that this still leads to a non-invertibleĜs is
if some check packets are linearly dependent on others.

This leads to the following slight modification to the de-
coder. Whenever a channel packet is received with LIS index
m + s, we examine if it is linearly dependent with any of the
other pending (unused) channel packets with LIS up tom+ s
in the natural course of rank determination forĜs as above. If
the packet is found to not increase the rank ofĜs, it is treated
as a lost channel packet and discarded.1

Thus, we can assume no linear dependencies in check
packets, so the decoder can decide whether the nexts unde-
coded source packets are decodable from the channel packets
y′[r1], ...,y

′[rs] by usings = n(y′[rs]) − m as a test rather
than a consequential result. Whenever this test condition is
met, source packetsx[m + 1], ...,x[m + s] are decoded.

The decoder described is optimal for the code, in that it
sequentially decodes eachx[j] at the earliest possible time
with respect to the received channel packets.

Since we have shown how both the encoder and decoder
remove decoded packets from their decisions, for the remain-
der of the discussion in this paper, the reader can assume,
without the loss of generality, thatm = 0.

3. HYBRID FEC-ARQ PROTOCOL

Now we embed the packet streaming code of the previous sec-
tion into a hybrid FEC-ARQ protocol. The goal of this pro-
tocol is to minimize expected sequential decodability delay
for all of the packets as this is a measure that directly cor-
relates with the interactive responsiveness of the applications
being considered. Intuitively, this happens if the probability

1For a sufficiently large fieldF , this dependency does not happen fre-
quently, and furthermore, the encoder is capable of choosinglinear combina-
tions carefully to avoid this, by using the same rank determination procedure.

of sequential decodability is maximized as quickly as pos-
sible. However, if we only maximize the sequential decod-
ability by sending check packets, the pending source packets
may not get a slot for transmission. Also, whenever feedback
indicates a source packet cannot be decoded, sending a new
source packet or even another check packet may cause longer
decoding delay. An important aspect of the protocol is thus
to combine feedback with estimates of network conditions to
balance sending check packets with sending (or resending, as
we will see) source packets.

3.1. Feedback

Our proposed hybrid FEC-ARQ protocol can work with a
number of feedback options but in this paper we assume a
verbose feedback regime where the receiver acknowledges
both received and lost packets. That is, each time a chan-
nel packet is received, the receiver acknowledges positively
and each time a loss is detected, the receiver acknowledges
negatively.2

LetP,N ,U respectively be the positively, negatively, and
not yet acknowledged channel packets. LetF be all con-
sumed yet undecoded source packets. LetQ be the uncon-
sumed source packets waiting in the source queue.

Given this feedback and the random erasure channel
model, the encoder can precisely update itself on the prob-
ability that each source packet can be sequentially decoded
from all the sent packets, deterministically usingP andN ,
and probabilistically using channel packets still in flightin
the round-trip pipelineU .

3.2. Probability Computation

Given the decoding logic in Sec 2.2, we can derive the prob-
ability of sequential decodability of source packets. Enumer-
ating through the packet loss patterns inU works for arbi-
trary coding structures, but requires an infeasible complexity
of O(2|U|).

Due to the special structure of the packet streaming code
of this paper, we next give a sequential decodability probabil-
ity calculation withO(L2) complexity, whereL is the num-
ber of source packets which are not known to be sequentially
decodable.

Let Ĝl be the sub-generator matrix formed by taking
columnsm + 1 to l of the rows of generator matrixG corre-
sponding to received channel packets with LIS packet index
n(y[k]) ≤ l, assuming that linearly dependent channel pack-
ets have already been thrown away. We know that we can
sequentially decode source packets up tol if rank(Ĝl) = l.

Let Rol be the number of original packets received with
LIS packet index equal tol, and letRcl be the number of

2Practically, this can be achieved by the use of channel packet sequence
numbers and indicating the received packets, from which the not-received
packets are inferred. This has the added benefit of giving thesender rich
information on varying network conditions.



check packets received with LIS packet index equal tol. Let
Rl be the rank of the matrix formed by taking rows of the gen-
erator matrix corresponding to these packets with LIS packet
index exactly equal tol. Assuming that there are no depen-
dencies in the random linear code, we can write the rank of
this matrix asRl = min(min(Rol, 1) + Rcl, l). Let Vl =
rank(Ĝl). Then, we can precisely write the rank ofĜl using
recursion as

Vl = min(Vl−1 + Rl, l), (5)

if there are no dependencies in the random linear code.
LetSl = Scl+min(Sol, 1) be the effective number of sent

packets with LIS packet index equal tol. Note that an original
packet with LIS packet indexl is grouped into a single packet
via the termmin(Sol, 1). Also assume that the channel pack-
ets sent are linearly independent. LetTl be the maximum
value thatRl can take on and is given byTl = min(Sl, l).

We know that we can sequentially decode up tol if Vl = l,
but we can also sequentially decode up tol if Vj = j for
somej > l since being able to sequentially decode up to a
particular packet implies being able to sequentially decode up
to all previous packets by definition. Letpl be the probability
that we can sequentially decode up to and includingl. Let Il

be an indicator variable that we can sequentially decode up to
l. Then, by conditioning on the rank of̂Gl, we get

pl =
l∑

v=0

P(Il = 1|Vl = v)P(Vl = v), (6)

whereP(·) is the probability of the given event.
To computeP(Vl = v), we can recurse on (5) as

P(Vl = v) =

min(l−1,v)
∑

i=max(0,v−Tl)

P(Vl−1 = i)P(Rl = v − i) (7)

for v = 0, 1, . . . , l − 1, and

P(Vl = l) =

l−1∑

i=l−Tl

P(Vl−1 = i)P(Rl ≥ l − i) (8)

for v = l. The recursion can start withP(V0 = 0) = 1.
To computeP(Il = 1|Vl = v), we can also recurse on (5)

as

P(Il = 1|Vl = v) =
Tl+v∑

i=v

P(Il = 1|Vl = v, Vl+1 = i)P(Vl+1 = i) =

Tl+v∑

i=v

P(Il+1 = 1|Vl+1 = min(i, l + 1))P(Rl = i − v), (9)

for v = 0, 1, . . . , l − 1, and

P(Il = 1|Vl = l) = 1. (10)

Here we have also used the fact that ifVl < l then, the only
way for Il = 1 is for Il+1 = 1. To start the recursion, we can
useP(Il = 1|Vl = v) = 0, for v 6= l for l = L which is
currently the last packet in setF .

To computeP(Rl = r) which is needed in the com-
putation, letUl,q be the indicator variable whether channel
packetq with LIS packet indexl has been received or not,
q = 1, . . . , Sl. P(Ul,q = 1) is simply given by the value ofǫ
for the corresponding channel packet, whereǫ is the loss rate
of the channel when the packet was sent. For original packets
which have been sentt times (which are grouped into a single
channel packet), the effective packet loss rate on them isǫt

instead ofǫ. (Similarly, if packet loss rate is time-varying, the
effective loss rate is

∏

i∈R ǫi whereR are the indices of chan-
nel packets sent for the same original packet). For channel
packets which have been positively acknowledged through
feedback,P(Ul,q = 1) = 1, and for those which have been
negatively acknowledgedP(Ul,q = 1) = 0.

Let Wl,q = min(Wl,q−1 +Ul,q, l), be the cumulative sum
of linearly independent channel packets with LIS packet in-
dex l using the firstq such coded packets. This can take on
the valuesWl,q = 0, . . . ,min(l, q), and can be computed us-
ing a simple recursion as

P(Wl,q = w) =

min(l,q−1,w)
∑

i=max(0,w−1)

P(Wl,q−1 = i)P(Ul,q = w − i) (11)

for w = 0, . . . ,min(l − 1, q), and

P(Wl,q = w) =

min(l,q−1)
∑

i=l−1

P(Wl,q−1 = i)P(Ul,q ≥ l − i) (12)

for w = l. To start the recursion, we can useP(Wl,0 = 0) =
1.

We can see that if the number of packets sent with LIS
packet index equal to a particularm isO(1), then the compu-
tation needed to evaluate the given summations is alsoO(1)
sinceTl isO(1). The number of such summations to compute
is O(L2) and thus that is the total complexity.

3.3. Transmission Strategy

As we have seen from the coding structure being used in Sec-
tion 2 as well as the decodability calculations in the current
section, we obtain the following transmission policies com-
monly seen in FEC-ARQ schemes as among the transmission
policies supported by this coding structure:

• PolicyS: Sending a new source packet without coding.

• PolicyC: Sending a check packet of only the undecoded
packets up to somex[j].



• PolicyR: Resending an already sent packet for thet-th
time.

Based upon the probability of sequential decodability
computation, we attempt to make transmission decisions so
that the

∑
pj is maximized over the setj ∈ F ∪Q but at the

same time do not wish to delay the sending of new original
packets unnecessarily. It is clear that sending a new original
packet from the setQ will result in pj staying the same for
all packets in setF . However, it will result inpj becoming
non-zero for the first packet in setQ. On the other hand, by
sending a check packet,pj will increase for packets in set
F , but all packet isQ will by delayed by one transmission
opportunity. This delay will be incurred unnecessarily with
probability pl, wherel is the LIS packet index of the check
packet (since with probabilitypl, we can already sequentially
decode up tol). A simple way to decide on the policy is to
pick the one which maximizes

∑

j∈F

(pj [k] − pj [k − 1]) − pJ [k − 1]|Q|, (13)

where pj [k] is the sequential decodability probability of
source packetk after sending the new channel packetk, and
pj [k − 1] is probability before sending the packet.|Q| is
the cardinality (number of elements) in the set.J is the LIS
packet index of the newly sent channel packet, and the sets
F andQ are the sets after sending the channel packet. The
first term is an improvement in probability of sequential de-
codability and the second term is a penalty for unnecessarily
delaying future packets.

For the case when the loss rate is relatively low in the
channel, the improvement in the probability of sequential de-
codability is usually small, except for the case when we get
a negative acknowledgment on an original packet. Other-
wise, since the improvement is small, so long as|Q| 6= 0,
the penalty of the second term is larger than benefit, and thus
the best solution is one wherepJ [k − 1] = 0, that is it is best
to pick a packet which is definitely useful. This means that
the only time a check packet is sent is ifQ = ∅. Also, in
general the benefits of a check packet are larger for the later
packets inF and alsopJ [k − 1] is smaller for largerJ , and
thus if a check packet is sent, for a wide range of conditions it
makes sense to haveJ = |F|, that is all the packets inF are
included in the check packet. These simplifications lead to
the following simple protocol which works well under a wide
range of source rate and network conditions for our simple
system model.3 It follows the precedence described in Table
2 when deciding among the transmission policies.

3Alternatively, the sender’s choice of policy at each transmission oppor-
tunity can be based on complex objective functions of the decodability prob-
abilities and network statistics, which may be beneficial in more complex
network scenarios.

Table 2: Proposed Hybrid FEC-ARQ Protocol

1. If F 6= ∅, and ifx[j] ∈ F is determined to be the first
source packet with probability of being sequentially de-
codable close to zero[†], then sendx[j] using Policy
R. This means retransmission has priority for source
packets almost certainly blocking the stream, and cor-
responds to an “ARQ mode”.

2. If Q 6= ∅, send the head-of-line source packet fromQ
using PolicyS, that is, send a new source packet ifQ is
not empty. This corresponds to a “systematic transmis-
sion mode”.

3. If Q = ∅, F 6= ∅, but [†] is not satisfied for anyx[j] ∈
F , send using PolicyC a redundancy packet with LIS
packet being the last packet enteringF , that is, send
a check packet using all available packets inF . This
corresponds to an “FEC mode”.

4. If Q = ∅,F = ∅, send nothing.

4. EXPERIMENTAL RESULTS

4.1. Comparison Setup

In this section, we compare the proposed hybrid FEC-ARQ
protocol against a number of benchmarks:

1. Pure ARQ: This is the algorithm used in TCP, in which
the sender only resends source packets known to be
lost. In this experiment, we let this protocol resend old
packets when there are no new source packets waiting
to be sent, which can only be beneficial. (This means
no transmission opportunity is wasted for fair compari-
son with the proposed hybrid FEC-ARQ protocol.)

2. Block FEC-ARQ: This is a fixed block-length system-
atic (K + R,K) MDS (Maximum Distance Separa-
ble) FEC code with fallback to retransmission.K is
the number of source packets, andR is the number
of check packets. We choose the amount of redun-
dancy based on the packet loss rate. For packet loss
rateǫ, R = ⌈ ǫK

1−ǫ
⌉. In the experiments, we choose two

block lengths:K = 19 (short block, SB FEC-ARQ)
andK = 38 (long block, LB FEC-ARQ). Sender re-
transmits source packets if not enough packets arrived
to decode a block. We also resend old packets when
there are no new source packets waiting to be sent for
the same aforementioned reason.

3. CO FEC-ARQ: It is the same as the hybrid FEC-ARQ
protocol, except that when source packets are known
to be undecodable, this protocol always sends a check
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Fig. 2: Comparison of several FEC-ARQ schemes and Pure ARQ scheme against the Delay LB, under different network
conditions. (*) marks the proposed protocol.B = 1250 in all cases. (a)S = 940, T = 1000, ǫ = 0.05, d = 50; (b)
S = 500, T = 1000, ǫ = 0.05, d = 50; (c) S = 500, T = 1000, ǫ = 0.30, d = 50; (d) S = 500, T = 1000, ǫ = 0.30, d = 200.

packet. That is, all cases whereR is used in hybrid FEC-
ARQ are replaced with PolicyC. (N.B. This is not an
existing scheme, but is included in the comparison to
better understand the behavior of the proposed hybrid
FEC-ARQ protocol.)

4.2. Delay Lower Bound

We also establish a strict lower bound on the delay of ev-
ery source packet in a stream. In order to sequentially de-
codex[j], at leastj channel packets must be received forany
code that uses source and channel packets of the same size.
If ti(m) is the time at which them-th non-erased transmis-
sion sent after the arrival ofx[i] is received, then the earliest
successful decoding ofx[j] can be no earlier than

max
1≤i≤j

ti(j − i + 1)

which in turn gives the lower bound on the delay forx[j], for
a particular realization of source and channel dynamics.

This lower bound is attainable by a strategy of retrans-
mitting each packet lost in the channel at the very next trans-
mission opportunity. This is clearly the optimal strategy,
provided perfect knowledge of packet loss is obtained by the

sender before the next transmission opportunity. In prac-
tice, there is non-trivial feedback delay, and this is not a
tight bound under such circumstances. However, it serves
as an excellent benchmark to compare against all FEC-ARQ
schemes.

4.3. Results and Discussion

The comparison result is shown in Figure 2. The following
experimental setup is used. Source and packets are bothB
bytes each. The source rate isS kbps. The network band-
width isT kbps, and packets are lost i.i.d. at loss rate ofǫ. The
path delay between the sender and receiver isd ms. Transmis-
sion opportunities are assumed to be regularly spaced at every
8B/1000T seconds, and source arrival is modeled as a Pois-
son process, withS/T new packets arriving at the sender on
average every transmission opportunity.

We test the performance of the several protocols under
four different network conditions in Figure 2: (a) low packet
loss rate (5%) and minor redundant channel capacity (1%);
(b) low packet loss rate (5%) and abundant redundant channel
capacity (45%), (c) high packet loss rate (30%) and medium
redundant channel capacity (20%), and (d) same as (c) but



with long path delay of200 ms.
We subject all schemes to the same randomly generated

realization of source arrival and channel loss patterns and
compare the cumulative distribution function (CDF) of the
delay experienced by the source packets in the sequence. For
example, in Figure 2(c), the proposed hybrid FEC-ARQ pro-
tocol delivers, and the decoder sequentially decodes,80% of
the packets in the stream within0.2 seconds of their insertion
at the source.

Comparing the proposed hybrid FEC-ARQ protocol with
other benchmark protocols, we notice that the proposed pro-
tocol has a superior delay performance.

Figure 2(a) shows a situation where there is little excess
network bandwidth to support FEC. In such a scenario, block
FEC-ARQ (either SB FEC-ARQ or LB FEC-ARQ) or CO
FEC-ARQ leads to poor delay performance, as they may im-
prudently waste the very few extra transmission opportunities
on check packets that happen not to be needed. We notice that
Pure ARQ performs well in this scenario, as is well known.
Nevertheless, hybrid FEC-ARQ still slightly outperforms it.4

In Figure 2(b), where there is abundant excess network
bandwidth, FEC shines. With hybrid FEC-ARQ, the algo-
rithm can actively insert many check packets into the network,
and cause the delay performance of hybrid FEC-ARQ to be
close to the lower bound. Block-based schemes (SB FEC-
ARQ or LB FEC-ARQ) show some benefit, but the improve-
ment over Pure ARQ is not nearly as dramatic.

When packet loss rate becomes significant, as in Figure
2(c), hybrid FEC-ARQ gains a superior advantage in delay
performance compared with either Pure ARQ or block FEC-
ARQ. CO FEC-ARQ (protocol without policyR) performs
close to hybrid FEC-ARQ about half of the time. However,
at 80-percentile delay performance and beyond, we notice
that CO FEC-ARQ becomes inferior to the schemes that use
some form of retransmission (hybrid FEC-ARQ, block FEC-
ARQ and Pure ARQ). It is evident that activating PolicyR
is very beneficial in heavy loss cases, and ensures that trans-
mission can recover from network conditions beyond the pro-
tection capability of FEC without adversely blocking the fu-
ture packets pending delivery. We notice that block-based
schemes (SB FEC-ARQ or LB FEC-ARQ) exhibit bifurcat-
ing behavior compared with Pure ARQ, performing better in
some cases but worse in others, which may be typical of these
simple switching FEC-ARQ strategies.

In the case of high packet loss rate coupled with high
path delay, as in Figure 2(d), hybrid FEC-ARQ demonstrates
significant performance advantage over Pure ARQ or block
FEC-ARQ. We notice that hybrid FEC-ARQ improves the
80-percentile transmission delay by almost a factor of 3 (from
1.3 seconds to0.4 seconds). The hybrid FEC-ARQ protocol
is thus capable of noticably affecting application interactivity
in the most difficult network conditions.

4It can be shown that hybrid FEC-ARQ never performs worse.

5. CONCLUSION

In this paper, we proposed a simple hybrid FEC-ARQ pro-
tocol for delivering sequential data streams losslessly and
with low delay. This protocol, based on a packet streaming
code well suited to sequential decoding, makes significant
improvement over retransmission strategies such as used by
TCP and outperforms FEC-ARQ schemes based on block
codes. We have benchmarked the performance against a strict
lower bound on delay performance and shown the protocol to
perform well relative to it. Because the decodability probabil-
ities can be calculated with low complexity, this protocol can
easily be modified for soft decisions or be extended with other
network protocol features such as congestion awareness, in
future work.
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